СанТехПроект     
Все о проектировании и монтаже

систем водоснабжения,
канализации,
отопления

www.santexproect.web-box.ru

  

                              Тепловые насосы

  Тепловой насос - это компактная экономичная и экологически чистая система отопления, позволяющая получать тепло для горячего водоснабжения и отопления коттеджей, используя при этом энергосберегающие технологии, основывающиеся на тепле низкопотенциальных источников. Таких как: тепло грунтовых вод, воздушное отопление, энергия ветра, тепло озер, тепло морей, тепло скважин, грунтовое тепло, тепло земных недр и т. п., путем переноса этого тепла к теплоносителю с более высокой температурой.

Тепловые насосы - это единственные автономные системы отопления, которые произво-дят в 3 - 4,5 раз больше тепловой энергии, чем потребляют на привод компрессора, и по-этому они являются наиболее эффективным источником обеспечивающим энергосбере-жение высокопотенциального тепла.

Тепловой насос по принципу работы похож на обычный кондиционер реверсивного типа (способные отапливать и охлаждать), но имеет расширенные функции и, в отличие от кондиционеров, адаптирован для работы при любых погодных условиях и минусовых температурах. Главная проблема кондиционеров - уменьшение производительности и ос-тановка кондиционеров при минусовых температурах (ниже -5 С), когда отопление наи-более важно. Эта проблема решена в геотермальных тепловых насосах.


Технические подробности роботы тепловых насосов 
Принцип работы теплового насоса отображен в цикле Карно, опубликованном в 1824 г. в его диссертации, и изучается в школьном курсе физики. Практическую теплонасосную систему предложил лорд Кельвин в 1852 г. под названием „умножитель тепла”.

                                

 
В соответствии с изображенным принципом действия, тепловой насос берет тепловую энергию, перекачивает ее, и отдает в другое место.

Принцип действия отопления геотермальными тепловыми насосами основан на сборе те-пла из почвы или воды, и передаче собранного тепла отоплению здания. Для сбора тепла незамерзающая жидкость течет по трубе, расположенной в почве или водоеме, к тепловому насосу. Тепловой насос, подобно холодильнику, отбирает около 8 °С у незамерзающей жидкости, при этом жидкость охлаждается. Жидкость снова течет по трубе, восстанавли-вает свою температуру и поступает к тепловому насосу. Отобранные тепловым насосом градусы передаются системе отопления и/или на подогрев горячей воды.
Возможно отбирать тепло у подземной воды - подземная вода с температурой около 10 °С подается из скважины к тепловому насосу, который охлаждает воду до +1…+2°С, и возвращает воду под землю.


Тепловая энергия есть у любого предмета с температурой выше минус двести семьдесят три градуса Цельсия - так называемый “абсолютный ноль”. То есть тепловой насос может отобрать тепло у любого предмета - земли, водоема, льда, подземной скалы, плывуна и т.д.


Теплонасос одновременно может выполнять следующие функции - греть воду для горячего бытового водоснабжения, кондиционировать через фанкойлы, греть бассейн, охлаждать например ледовый каток, подогревать крыши и дорожки от льда… То есть одно оборудование может взять на себя все функции по тепло-холодоснабжению здания.

Принципы работы теплового насоса

1. - насос с открытым циклом - из подземного потока (плывуна) забирается подземная вода, подается в размещенный внутри здания тепловой насос, вода отдает/забирает тепло у теплового насоса, и возвращается в подземный поток на рас-стоянии от места забора. Плюсом такого способа является возможность одновре-менно получить воду для водоснабжения дома. Открытые системы являются очень эффективными, поскольку температура подземной воды является относительно высокой и круглогодично стабильной. Использование воды из скважины не наносит ущерба грунтовым водам, не изменяет уровень грунтовых вод в водном горизонте, поскольку открытую систему можно рассматривать как соеди-нённые сосуды, где вода, забираемая из одного колодца, направляется обратно под землю через второй колодец, не изменяя общий уровень воды. Корректно, в соответствии с нормативами сооружённые скважины обеспечивают безопасную для окружающей природы стабильную работу системы отопления.

2. - насос с закрытым циклом и водоразмещенным теплообменником - специальная жидкость (теплоноситель) прокачивается по коллекторам (трубкам), находящимся в водоеме, и отдает/забирает тепло у воды. Здания целесообразно отапливать тепловой энергией открытого водоёма в том случае, если здание находится от во-доёма ближе 100 метров, и глубина водоёма, а также береговая линия соответст-вуют условиям, требуемым для прокладки коллектора. Плюсом такого способа является его относительная дешевизна

3. - насос с закрытым циклом и горизонтальным теплообменником, размещенным в земле - трубки (коллекторы), в которых прокачивается теплоноситель, размещены горизонтально на глубине не менее метра от поверхности земли. Основной опасностью является неосмотрительность при проведении землекопных работ в зоне нахождения почвенного коллектора. Для современно жилого дома с отапли-ваемой площадью в 200 м2 под основание коллектора требуется около 500 м2 по-верхности грунта. При прокладке коллектора вблизи деревьев трубу коллектора не следует укладывать ближе, чем 1,5 метра от кроны. Правильно выбранный по размерам и правильно уложенный почвенный коллектор не влияет негативно ни на рост растений, ни на экологические условия

4. - насос с закрытым циклом и вертикальным теплообменником - трубки, в кото-рых прокачивается теплоноситель, размещены вертикально в земле и уходят в глубину земли до 200 метров.
Как известно, на глубине 15-20 метров от поверхности земля имеет стабильную температуру 10-12 градусов Цельсия независимо от поры года. С увеличением глу-бины температура земли повышается. Этот способ обеспечивает самую высокую эффективность работы теплонасоса, малый расход электроэнергии и дешевое тепло - на 1 кВт электроэнергии получают до 5 кВт тепловой энергии, но требует боль-ших первоначальных капиталовложений

Выводы:
Горизонтальное размещение, на первый взгляд, кажется дешевле. Но при подсчете объема земли, которую надо «снять» с поверхности (далее эту поверхность нельзя использовать под застройку и засадку деревьями), приоритет приобретает иное расположение геозонда. Ориентиром можно считать следующую пропорцию: на 1м2 отапливаемого помещения необходимо учесть 2,5м2 площади геозонда.

Наклонное расположение имеет сложности с монтажными работами. Поэтому в большинстве случаев применяются тепловые насосы с вертикальными геозондами.

Устройство и принцип действия

Тепловой насос состоит из 4 основных агрегатов:
испаритель,
конденсатор,
расширительный вентиль (разряжающий вентиль-дроссель, понижает давление),
компрессор (повышает давление).

Эти агрегаты связаны замкнутым трубопроводом. В системе трубопровода циркулирует хладагент, который в одной части цикла представляет собой жидкость, а в другой - газ.
 

Точка кипения для разных жидкостей меняется посредством давления, чем выше давле-ние, тем выше точка кипения. Вода закипает при нормальном давлении при температуре +100 °С. При повышении давления вдвое, температура кипения воды достигает +120 °С, а при уменьшении давления в 2 раза, вода закипает при +80 °С. Хладагент в тепловом насо-се имеет ту же тенденцию - его температура кипения изменяется при изменении давления. Точка кипения хладагента лежит низко, приблизительно - 40 °С при атмосферном давле-нии, поэтому может использоваться даже с низкотемпературным тепловым источником.
 
Расчет горизонтального коллектора теплового насоса

Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, на-личия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для го-ризонтальных коллекторов он составляет 20 Вт/м. Более точно: сухой песок – 10, сухаяг-лина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт/м. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах принимают обычно равной 3 °С. На участке над коллектором не следует возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть 0,7–0,8 м. Длина одной траншеи составляет обычно от 30 до 120 м. В качестве теплоносителя первичного контура рекомендуется использовать 25-процентный раствор гликоля. В расчетах следует учесть, что его теплоемкость при температуре 0 °С составляет 3,7 кДж/(кг•К), плотность – 1,05 г/см3.

При использовании антифриза потери давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной уста-новки потребуется определить расход антифриза:

Vs = Qo•3600 / (1,05•3,7•.t),

где .t – разность температур между подающей и возвратной линиями, которую часто при-нимают равной 3 К, а Qo – тепловая мощность, получаемая от низкопотенциального ис-точника (грунт). Последняя величина рассчитывается как разница полной мощности теп-лового насоса Qwp и электрической мощности, затрачиваемой на нагрев фреона P:

Qo = Qwp – P, кВт.

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитывают-ся по формулам:

L = Qo/q,

A = L•da.

Здесь q – удельный (с 1 м трубы) теплосъем; da – расстояние между трубами (шаг уклад-ки).


Пример расчета теплового насоса.


Исходные условия: теплопотребность коттеджа площадью 120–240 м2 (в зависимости от теплоизоля- ции) – 12 кВт; температура воды в системе отопления должна быть 35 °С; минимальная температура теплоносителя – 0 °С. Для обогрева здания выбран тепловой насос WPS 140 l (Buderus) мощностью 14,5 кВт (ближайший больший типоразмер), затра-чивающий на нагрев фреона 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина) q равняется 20 Вт/м. В соответствии с показанными выше формулами рассчитыва-ем:

1) требуемую тепловую мощность коллектора Qo = 14,5 – 3,22 = 11,28 кВт;
2) суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м. Для организации такого коллек-тора потребуется 6 контуров длиной по 100 м;
3) при шаге укладки 0,75 м необходимая площадь участка А = 600 х 0,75 = 450 м2;
4) общий расход гликолевого раствора Vs = 11,28•3600/ (1,05•3,7•3) = 3,51 м3/ч, расход на один контур равен 0,58 м3/ч.

Для устройства коллектора выбираем металлопластиковую трубу типоразмера 32х3 (на-пример, Henco). Потери давления в ней составят 45 Па/м; сопротивление одного контура – примерно 7 кПа; скорость потока теплоносителя – 0,3 м/с.

Расчет зонда 

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные металлопластиковые или пластиковые (при диаметрах выше 32 мм) трубы. Как правило, в одну скважину вставляется две петли, после чего она заливается цементным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м. Можно также ориентироваться на следующие данные по теплосъему:

сухие осадочные породы – 20 Вт/м;
каменистая почва и насыщенные водой осадочные поро-
ды – 50 Вт/м;
каменные породы с высокой теплопроводностью – 70 Вт/м;
подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +10 °С. Рас-стояние между скважинами должно быть больше 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку.

Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для .t = 5 °С.

Пример расчета. Исходные данные – те же, что в приведенном выше расчете горизонталь-ного коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м.


Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В ка-ждой из них размещаем по две петли из металлопластиковой трубы типоразмера 26х3; всего – 6 контуров по 150 м.

Общий расход теплоносителя при .t = 5 °С составит 2,1 м3/ч; расход через один контур – 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери дав-ления в трубе – 96 Па/м (теплоноситель – 25-процентный раствора гликоля); сопротивле-ние контура – 14,4 кПа; скорость потока – 0,3 м/с.

Выбор оборудования 

Поскольку температура антифриза может изменяться (от –5 до +20 °С) в первичном кон-туре тепло насосной установки необходим расширительный бак.

Рекомендуется также установить на возвратной линии накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено». Слишком частые пуски мо-гут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии – на случай отключения электроэнергии. Его минимальный объем принимается из расчета 10–20 л на 1 кВт мощности теплового насоса.

При использовании второго источника энергии (электрического, газового, жидко- или твердотопливного котла) он подключается к схеме через смесительный клапан, привод которого управляется тепловым насосом или общей системой автоматики.

В случае возможных отключений электроэнергии нужно увеличить мощность устанавли-ваемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 – tоткл), где tоткл – продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4 ч этот коэффициент будет равен 1,2.

Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентно-го режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии.

Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Напри-мер, для Центрального региона России время, когда температура опускается ниже –10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона – 5112 ч, а средняя температура января составляет примерно –10 °С. Поэтому наиболее целесооб-разной является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного теплогенератора в периоды, когда температура воздуха опускается ниже определенной: –5 °С – в южных регионах России, –10 °С – в централь-ных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увели-чивается при возрастании мощности установки.

В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрываются тепловым насосом, а оставшиеся 30 – элек-трическим котлом или другим теплогенератором. В южных регионах можно руководство-ваться соотношением мощности теплового насоса и дополнительного генератора тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м2 на 4 человек при тепловых потерях 70 Вт/м2 (при расчете на –28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой вели-чине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения – 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент – 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт–вода» Logafix WPS 160 L (Buderus) мощностью 17,1 кВт, потребляющий 5,5 кВт электроэнергии.

Для бивалентной системы с дополнительным электрическим нагревателем и температурой уставки –10 °С с учетом необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла – 6,2 кВт (в сумме – 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт.

 В настоящее время для наших условий по экономичности работы тепловой насос уступа-ет только газовым котлам, а по эксплуатационным затратам, долговечности, безопасности и экологической чистоте превосходит все другие генераторы тепловой энергии.

Отметим, что при установке тепловых насосов в первую очередь следует позаботиться об утеплении здания и установке стеклопакетов с низкой теплопроводностью

Материалы использованы с сайта http://heatpumps.com.ua/



 
     

 Все материалы предоставлены исключительно в ознакомительных целях, после ознакомления файлы необходимо удалить с жёсткого диска

    р   

Rambler's Top100    Рейтинг@Mail.ru      МЕТА - Украина. Рейтинг сайтов   
2009-2011  г. СанТехПроект
ВебСтолица.РУ: создай свой бесплатный сайт!  | Пожаловаться  
Движок: Amiro CMS